Horizontal Alignments and Horizontal-Vertical Coordination

The shortest distance between two points is:

- A straight line
- The circumference of a circle passing through both points and the center of the sphere
- Always under construction
Horizontal Curve Safety

Approximately 25% of all fatal crashes occur along horizontal curves.

Average crash rates for horizontal curve segments are about 3 times that of tangent segments.

AASHTO Curve Design Model

\[e + f = \frac{V^2}{15} R \]

- \(e \) = superelevation
- \(f \) = side friction factor
- \(V \) = design speed (mph)
- \(R \) = radius of curve (ft)
Side Friction Factor Assumptions

- Maximum “f” based upon avoiding driver discomfort
- Provides ample margin of safety against skidding

2004 Greenbook Exhibit 3-12 for recommended side friction values in design

Side Friction Factor Assumptions

- Assumed limit of skidding shown in upper part of graph
- “Maximum” friction factors are based on comfortable operation far short of losing traction around curves

2001 Greenbook Exhibit 3-11: Comparison of Side Friction Factors
Side Friction Factor Assumptions

- Shows how side friction is developed as degree of curvature increases
- Numbers in circles refer to “methods” of distribution

From 2004 Greenbook Exhibit 3-13: Methods of Distributing Superelevation and Side Friction

Method 2
- Maxes out side friction before introducing superelevation
- Used for low-speed urban streets

From 2004 Greenbook Exhibit 3-13: Methods of Distributing Superelevation and Side Friction
Method 3
- Introduces no side friction at design speed until max super rate is achieved
- Not used for design

From 2004 Greenbook Exhibit 3-13: Methods of Distributing Superelevation and Side Friction

Method 4
- Same as Method 3 except that a running speed is assumed
- Avoids having to steer against super at less than design speed

From 2004 Greenbook Exhibit 3-13: Methods of Distributing Superelevation and Side Friction
Method 5
- Used for rural and high-speed urban design
- Parabolic smoothing out of Method 4
- Little side friction on flat curves; more as curves sharpen

From 2004 Greenbook Exhibit 3-13: Methods of Distributing Superelevation and Side Friction

Road Design Manual Criteria
Mn/DOT uses three methods:

- **Low Speed**
- **High Speed (normal conditions)**
- **High Speed (restricted conditions)**
High Speed (normal conditions)

Table 3-3.02A (below) and Figure 3-3.02A (right)

• Method 5 distribution for rural and high-speed urban design

<table>
<thead>
<tr>
<th>Curve Radius (R)</th>
<th>V=20 mph</th>
<th>V=25 mph</th>
<th>V=30 mph</th>
<th>V=35 mph</th>
<th>V=40 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e</td>
<td>L</td>
<td>e</td>
<td>L</td>
<td>e</td>
</tr>
<tr>
<td>200</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
</tr>
<tr>
<td>400</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
</tr>
<tr>
<td>600</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
</tr>
<tr>
<td>800</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
</tr>
</tbody>
</table>

Low Speed

Table 3-3.02B (below) and Figure 3-3.02B (right)

• Method 2 distribution for low-speed urban streets

<table>
<thead>
<tr>
<th>Curve Radius (R)</th>
<th>V=20 mph</th>
<th>V=25 mph</th>
<th>V=30 mph</th>
<th>V=35 mph</th>
<th>V=40 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e</td>
<td>L</td>
<td>e</td>
<td>L</td>
<td>e</td>
</tr>
<tr>
<td>200</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
</tr>
<tr>
<td>400</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
</tr>
<tr>
<td>600</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
</tr>
<tr>
<td>800</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
<td>0</td>
<td>NC</td>
</tr>
</tbody>
</table>
Figure 3-3.03A

- Curvature / speed / superelevation chart using maximum side friction factors
- Useful tool for developing solutions in constrained or special circumstances

Examples:
- Curves approaching a stop condition
- Second curves on downstream portions of freeway ramps
- Reduced superelevation through intersections
- Flat curves where adverse super or minimal super would be advantageous
HC Model Basis is Driver Comfort

Although the model stems from the laws of mechanics, the values used in design are based on practical limits and empirically determined factors.

Does Model Match Driver Behavior?

- Do vehicles track a curve as designed?
- At what speeds do drivers track curves?
- What are the operations dynamics of trucks vs. passenger cars?
Off-Tracking on Horizontal Curves
Actual Vehicle Path Does Not Follow a Perfect Circle

- Drivers ‘Overshoot’ (track a path sharper than the radius)
- Driver path is spiral
- Overshoot behavior is independent of speed

Spiral Curve Transitions

- Provides a more natural turning path
- Minimizes encroachment into adjacent lane
- Provides a suitable location for superelevation runoff
Horizontal Curve Safety

Approximately 25% of all fatal crashes occur along horizontal curves.

Do Drivers skid off the road or drive off the road on a curve?

Average crash rates for horizontal curve segments are about 3 times that of tangent segments.

Risk Assessment for Horizontal Alignment

The speed of vehicles entering a curve is influenced by the horizontal and vertical alignment on the approaches. Risk varies as a function of the approach speed distribution.

- Avoid sharp curves at ends of long tangents
- Introduce sharp curvature through series of successively sharper curves
- Eliminate/minimize access near horizontal curves

Guide for Achieving Flexibility in Highway Design - AASHTO
Truck Operations on Curves

- Trucks with high centers of gravity may overturn before losing control due to skidding
- Trucks on downgrade curves generate greater lateral friction
- Margin of safety for ‘f’ is lower for trucks

Managing the Risk

Will two horizontal curves of the same radius with similar cross sections and traffic volumes always have a similar safety performance?

Hwy 411
Apple County

Hwy 21
Orange County
Risk Assessment for Horizontal Alignment

Risk of serious crashes within horizontal curves is a function not only of the curve geometry, but also of:

- The cross section
- Sight distance
- Presence of intersections and driveways
- Roadside features and clear zone
- Driver Expectancy

Case Study: CR 202

State Wildlife Management Area

Three Rivers Regional Park

Looking North

Goose Lake

Where does the road go?

Looking South
Session 8
Horizontal Alignments and Horizontal-Vertical Coordination

Case Study: CR 202

Reinforced Soil Slopes

Case Study: CR 202

Unknown Unknown!
Trees lost due to contaminated soil removal.

Looking North
Case Study: CR 202

Looking South

What does the driver see?
Session 8

Horizontal Alignments and Horizontal-Vertical Coordination

Nominally Safe but Substantive Safety Problem

A History of Safety Problems

I-494

R=260'

No Transition

Standard Exit

Lake Road

Standard Taper

2.3%

Basis for Standards

Driver Comfort

Minnesota Department of Transportation

University of Minnesota Center for Transportation Studies

Advanced Design Flexibility Workshop

May 2010